Loss of the Habenula Intrinsic Neuromodulator Kisspeptin1 Affects Learning in Larval Zebrafish

نویسندگان

  • Charlotte Lupton
  • Mohini Sengupta
  • Ruey-Kuang Cheng
  • Joanne Chia
  • Vatsala Thirumalai
  • Suresh Jesuthasan
چکیده

Learning how to actively avoid a predictable threat involves two steps: recognizing the cue that predicts upcoming punishment and learning a behavioral response that will lead to avoidance. In zebrafish, ventral habenula (vHb) neurons have been proposed to participate in both steps by encoding the expected aversiveness of a stimulus. vHb neurons increase their firing rate as expectation of punishment grows but reduce their activity as avoidance learning occurs. This leads to changes in the activity of raphe neurons, which are downstream of the vHb, during learning. How vHb activity is regulated is not known. Here, we ask whether the neuromodulator Kisspeptin1, which is expressed in the ventral habenula together with its receptor, could be involved. Kiss1 mutants were generated with CRISPR/Cas9 using guide RNAs targeted to the signal sequence. Mutants, which have a stop codon upstream of the active Kisspeptin1 peptide, have a deficiency in learning to avoid a shock that is predicted by light. Electrophysiology indicates that Kisspeptin1 has a concentration-dependent effect on vHb neurons: depolarizing at low concentrations and hyperpolarizing at high concentrations. Two-photon calcium imaging shows that mutants have reduced raphe response to shock. These data are consistent with the hypothesis that Kisspeptin1 modulates habenula neurons as the fish learns to cope with a threat. Learning a behavioral strategy to overcome a stressor may thus be accompanied by physiological change in the habenula, mediated by intrinsic neuromodulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of the habenula neuromodulator Kisspeptin1 disrupts learning in larval zebrafish Short title: Habenula modulation and operant learning

Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Sheffield S10 2TN, UK; Institute for Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673; National Centre for Biological Sciences, GKVK Campus, Bellary Rd, Bengaluru, Karnataka 560065, India; Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921;...

متن کامل

1 Loss of the habenula neuromodulator Kisspeptin 1 disrupts learning

Learning how to actively avoid a predictable aversive stimulus involves two steps: recognizing the cue that predicts upcoming punishment, and learning a behavioral response that will lead to avoidance. In zebrafish, ventral habenula (vHb) neurons have been proposed to participate in both steps by encoding the expected aversiveness of a stimulus. vHb neurons increase their firing rate as expecta...

متن کامل

The Right Dorsal Habenula Limits Attraction to an Odor in Zebrafish

BACKGROUND The habenula consists of an evolutionarily conserved set of nuclei that control neuromodulator release. In lower vertebrates, the dorsal habenula receives innervation from sensory regions, but the significance of this is unclear. Here, we address the role of the habenula in olfaction by imaging neural activity in larval zebrafish expressing GCaMP3 throughout the habenula and by carry...

متن کامل

The Habenula Prevents Helpless Behavior in Larval Zebrafish

Animals quickly learn to avoid predictable danger. However, if pre-exposed to a strong stressor, they do not display avoidance even if this causes continued contact with painful stimuli [1, 2]. In rodents, lesioning the habenula, an epithalamic structure that regulates the monoaminergic system, has been reported to reduce avoidance deficits caused by inescapable shock [3]. This is consistent wi...

متن کامل

Neuronal connectivity between habenular glutamate‐kisspeptin1 co‐expressing neurons and the raphe 5‐HT system

The habenula, located on the dorsal thalamic surface, is an emotional and reward processing center. As in the mammalian brain, the zebrafish habenula is divided into dorsal (dHb) and ventral (vHb) subdivisions that project to the interpeduncular nucleus and median raphe (MR) respectively. Previously, we have shown that kisspeptin 1 (Kiss1) expressing in the vHb, regulates the serotonin (5-HT) s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017